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Single-frequency operation or locking in a lateral array of three laser oscillators is studied within the
composite-cavity-mode approach. We compute the regions of stable locking, which have a nontrivial shape in
the plane of coupling strength versus frequency detuning. The locking regions depend drastically on the
amount of amplitude-phase coupling of the lasing field that is quantified by the � parameter. For small �,
locking is possible for arbitrary coupling, but only if the middle laser has sufficient frequency detuning from
the two outer lasers. In contrast, for larger �, locking is only possible for weak to moderate coupling, provided
that all three lasers have similar frequencies.
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I. INTRODUCTION

Compact sources of high-power coherent radiation are
strongly desired in fundamental science �e.g., for spectros-
copy� and various applications, including material processing
�e.g., cutting, welding�, medicine �e.g., laser surgery�, and
entertainment �e.g., large-scale laser displays�. The com-
monly used broad-area semiconductor lasers suffer from dif-
ficult to control spatiotemporal instabilities and poor beam
quality at high optical powers �1–3�. As technological
progress makes it feasible to produce more sophisticated la-
ser devices, lateral laser arrays emerged as an interesting
alternative for generating optical beams that combine high
power and quality �4–16�. While they are more promising
than broad-area lasers, laser arrays too exhibit various insta-
bilities and complex dynamical behavior. Often, additional
optical elements, such as an external mirror or a synchroniz-
ing master laser, are used in an attempt to stabilize laser
arrays �4,12,15,16�, leading to involved optical designs.
There has been important previous work on stability of
single-frequency operation or locking in a coupled laser de-
vice on its own �4,7,17–19�, but some basic questions still
remain unexplored. In particular, a better understanding of
coupled laser stability in dependence on key array param-
eters, such as different widths of individual lasers, would be
very desirable. In this respect, three laterally coupled lasers
form the simplest system with an underlying structure that is
also found in larger arrays. Hence, the study of the three-
laser array constitutes a first step toward understanding the
stability properties of large arrays.

In this paper we show that a linear array of three nearest-
neighbor coupled laser oscillators exhibits interesting lock-
ing behavior that is fundamentally different from two-
oscillator systems �20�. Specifically, we consider a
spatiotemporal composite-cavity model as in �17�, where a
similar three-laser geometry has been used to evaluate the
influence of spatial gain variation. Here, we present a bifur-
cation analysis of such a model to unveil the complicated
dependence of stable locking on the relevant system param-
eters. First of all, we determine the dependence of stable
locking on the coupling strength and on the detuning of the

middle laser from two identical outer lasers. One key finding
is the strong dependence of the type and extent of stable
locking on the amount of amplitude-phase coupling in the
lasing field �21�. In lasers the amplitude-phase coupling is
quantified by the well-known � parameter, also called the
linewidth-enhancement factor �22�. It has typical values of
��0 �e.g., for gas, crystal, and quantum dot semiconductor
lasers� and 1���10 �e.g., for widely used bulk and
quantum-well semiconductor lasers� �23�. Second, we study
modifications to the locking region arising from different fre-
quencies of outer lasers and different distances between
neighboring lasers. Hence, our results contribute to the better
understanding of amplitude-phase coupling effects on syn-
chronization in coupled �laser� oscillators, which are also of
technological importance for the design of locked laser ar-
rays.

This article is structured as follows. In Sec. II we describe
the laser system and the modeling approach. Sec. III dis-
cusses the influence of the linewidth-enhancement factor for
the symmetrical case where the two outer laser are identical.
In Sec. IV we consider effects of breaking this symmetry. We
finish with conclusions in Sec. V.

II. COMPOSITE CAVITY MODEL

We consider a laser device consisting of three laser stripes
�A ,B ,C� oriented along the longitudinal z direction in which
the laser beam is propagating, and coupled in the lateral x
direction. To analyze spatiotemporal instabilities in the laser
array we decompose the total electric field in terms of spatial
composite-cavity mode profiles Xj�x� of the entire array
�24,25�,

E�x,t� =
1

2�
j

Ej�t�Xj�x� + c.c., �1�

where the Ej�t� are the complex-valued time-dependent field
amplitudes. Following Refs. �17,26� we focus on the x direc-
tion only. Hence, the composite-cavity mode profiles Xj�x�
are solutions of the Helmholz equation,
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	 �2X

�x2 + n2�x�
� j

2

c2 − kz
2
X�x� = 0, �2�

and appropriate boundary conditions. Here, kz=5�
�106 m−1 is the z component of the total wave vector, � j is
the composite-cavity mode frequency, and n�x� reflects the
refractive index variation in the x direction. In particular, we
assume

n�x� = � ng = 3.6, in the passive gaps between lasers

ns = 3.61, in the active laser sections.
�

The boundary conditions require that the electric field and its
first derivative are continuous at each refractive index step
and that they vanish at infinity. As in Ref. �26� we use sine
functions in the active section and exponential functions in
the passive section. Such solutions of the Helmholz Eq. �2�
satisfy the orthogonality relation



−�

�

n2�x�Xj�x�Xj��x�dx = � j j�N , �3�

where � j j� is the Kronecker delta and N= �nb
2 /2��3w0+2d0� is

a normalization constant with nb=3.6, w0=4 �m, and d0
=4 �m.

The time evolutions of the complex-valued electric field
amplitude Ej�t� associated with the composite-cavity mode
Xj�x� and the carrier density Ns�t� in laser stripe s are gov-
erned by

dEj

dt
= − i�� j − 	 j�Ej − 
Ej + 
�

j�
��

s

Kjj�
s ��1 + �Ns�

− i���1 + Ns���Ej�,

dNs

dt
= � − �Ns + 1� − �

j,j�

Kjj�
s �1 + �Ns�Re�EjEj�

� � . �4�

Here the index j= �1,2 ,3� refers to the three composite-
cavity modes that are considered �Fig. 1�, s= �A ,B ,C� refers
to the three lasers, and the star denotes complex conjugation;
see Refs. �24,26� for details of the derivation. Most impor-
tantly, coupling between lasers occurs via the evanescent
electric field in the lateral x direction and depends on the
laser distance ds�s �or the width of the passive gap between
the lasers� and the laser-width mismatch in the x direction

s�s=ws�−ws. Note that Eqs. �4� depend on the coupling pa-
rameters ds�s and 
s�s implicitly via composite-mode fre-
quencies � j and the mode overlap integrals

Kjj�
s =

ns

N
s

Xj�x�Xj��x�dx

over the respective active region s. We use typical semicon-
ductor laser parameters, namely, the confinement factor
�=0.1, the differential gain coefficient �=2.5�10−20 m−2,
the carrier density at transparency Nts=2.0�1024 m−3, the
electric field decay rate 
E=2.0�1011 s−1, and the carrier
decay rate 
N=1.0�109 s−1. This gives the normalized de-
cay rate 
=100 and gain coefficient ��5.2. Each laser is

pumped at four times threshold, that is, �=4.
Here, we define locking as a single-frequency solution of

Eqs. �4�,

Ej�t� = �Ej
0�e−i��0t+�j

0�, Ns�t� = Ns
0, �5�

where all nonzero complex-valued modal amplitudes have
constant intensities Ij = �Ej

0�2, the same optical frequency �0, a
constant phase-shift � j

0, and each laser has a constant carrier
density Ns

0. Simultaneous numerical continuation �27� of the
composite-cavity mode profiles Xj�x� and the locking solu-
tions Eq. �5� unveils the stability diagram in the parameter
plane of the laser distances and the width differences of the
active laser sections.

III. IDENTICAL OUTER LASERS

Guided by the geometry of the system we first discuss the
case where the two outer lasers are identical wA=wC
=4.0 �m and the distance between the middle laser and
each outer laser is the same d=dBA=dCB. Such a setup is
invariant under the interchange of the two outer lasers, which
is mathematically a Z2 symmetry. Figure 1 shows the three
composite-cavity mode profiles that arise in this symmetric
configuration. Symmetric modes have identical electric field
in the two outer lasers; see mode 1 in Figs. 1�a�, 1�d�, and
1�g� and mode 3 in Figs. 1�c�, 1�f�, and 1�i�. Antisymmetric
modes have an electric field of opposite sign in the two outer
lasers; see mode 2 in Figs. 1�b�, 1�e�, and 1�h�. The antisym-
metric mode 2 is insensitive to changes of the width wB. On
the other hand, the symmetric modes do depend on wB.
Namely, mode 1 is dominant in the outer lasers if 
BA�0,
and it is dominant in the middle laser if 
BA�0 �Figs. 1�a�
and 1�g��; the symmetric mode 3 exhibits the opposite be-
havior �Figs. 1�c� and 1�i��; also compare with Ref. �17�.

Figure 2 shows the complete bifurcation diagram of the
stable locked solution �Eq. �5��. The shaded regions of stable
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FIG. 1. The three considered lateral composite-cavity-mode pro-
files X1�x� to X3�x� for constant laser distance d=5.0 �m, fixed
lateral widths wA=wC=4.0 �m of lasers A and B, and different
lateral width of the middle laser, namely 
BA=−0.05 �m in �a�–
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locking are bounded by saddle node �S�, Hopf �H�, and tran-
scritical �Tr� bifurcation curves, which correspond to differ-
ent locking-unlocking transitions. Light shading indicates
that only the two symmetric composite-cavity modes con-
tribute to locked solution �5�, while in the dark shaded region
all three modes contribute. Special bifurcation points �black
dots� mark the switch over between different bifurcation
curves or types of the locking boundary. A comparison be-
tween panels �a� and �b� of Fig. 2 shows a dramatic differ-
ence between the type and extent of stable locking regions
for different values of �. This is illustrated further in Fig. 3,
showing modal intensities Ij = �Ej

0�2 of locked solutions �5� as
well as the corresponding phase difference between the total
electric field �Eq. �1�� in lasers A and B, �AB, and in lasers A
and C, �AC, in dependence on 
BA for fixed d.

For �=0 �Fig. 2�a�� we do not find stable locking near the
central value of 
BA=0, where the middle laser has the same
frequency as the two outer lasers. Rather, locking occurs
stably within two bands where the middle laser is sufficiently
detuned �positively or negatively� from the two outer lasers.
Furthermore, there are four different locking regions. The
upper light shaded locking region in Fig. 2�a� is dominated
by mode 3 with a relatively small contribution of mode 1
�Fig. 3, �a1�–�a3��. The lower light shaded locking region is
dominated by mode 1 with a relative small contribution of
mode 3 �Fig. 3, �a1�–�a3��. In both cases the intensity in the
two outer lasers is identical. Furthermore, the phase differ-
ence �AB between the fields in lasers A and B is close to zero
if 
BA�0 and close to � if 
BA�0 �Fig. 3, �a4��. The phase
difference �AC between lasers A and C is always zero �Fig. 3,
�a5��. In other words, the middle laser is in phase with the
outer lasers ��AB�0 and �AC�0� if 
BA�0 and out of
phase with the outer lasers ��AB�� and �AC�0� if 
BA
�0. The transcritical bifurcation �Tr� indicates when mode 2
moves above its lasing threshold so that three composite-
cavity modes are phase locked to a single frequency in the
dark shaded region �Fig. 3, �a1�–�a3��. Since mode 2 is anti-
symmetric, the total intensity in the two outer lasers now
differs. Furthermore, for the three-mode locked state we find
that �AB�0, � and �AC�0 �Fig. 3, �a4� and �a5��.

In contrast, for �=1.5 �a typical value for quantum-well
semiconductor lasers �23��, there is only a single stable lock-
ing region, which is located around the line 
BA=0, where
wB�wA,C �Fig. 2�b��. The locked solution is no longer domi-
nated by a single composite-cavity mode, but is a coherent
superposition of modes 1 and 3, which have comparable am-
plitudes �Fig. 3, �b1�–�b3��. For the phase difference between
lasers A and B we find that �AB�� if 
BA=0, meaning that
the middle laser is out of phase with the outer lasers. Fur-
thermore, �AB increases �decreases� slightly as 
BA increases
�decreases�. In particular, unlike in the case of �=0, no
stable locked solution is found where all three lasers oscillate
in phase. The important difference is that for ��0, the re-
fractive index depends on the carrier density �index effect�,
which is what gives rise to the amplitude-phase coupling. As
the middle laser typically equilibrates at a different carrier
density compared to the two outer lasers, it can vary its op-
tical width—defined as the product of the physical width and
the refractive index. We find that for �=1.5 stable locking
occurs for a sufficiently large difference in the optical width
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FIG. 2. �Color online� Stability diagram of locked solution �5� in
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BA� plane for the modal intensities Ij = �Ej
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indicates phase locking of two composite-cavity modes and dark
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double Hopf �HH� bifurcations, and saddle-node transcritical �ST�
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between the inner and the two outer lasers, even though the
physical widths wA,B,C remain identical. This interesting ef-
fect due to amplitude-phase coupling can be interpreted as
stable locking via “self-detuning” of the middle laser. As can
be seen from Fig. 2�c� for �=3, there are no qualitative
changes in the locking region for higher values of �.

To summarize the effect of the linewidth-enhancement
factor �, we show in Fig. 4 the different locking regions in

the �d ,�� plane for a small width difference 
BA=0.02 �m.
We find the characteristics of the locking regions from Fig.
2�a� to be typical for ��0.5, whereas a locking region
as in Figs. 2�b� and 2�c� is typical for ��0.5. In Fig. 4,
the transition between the two cases from Fig. 2 is marked
by the transcritical bifurcation �Tr�. Details of this transition
in the �d ,
BA� plane involve several qualitative changes
�codimension-three bifurcations� at intermediate values of �,
which are beyond the scope of this paper. Finally, from Fig.
4 we can see that for ��0.5 there is a single locking region
bounded by a Hopf bifurcation on one side and a saddle-
node bifurcation on the other side. As � increases this lock-
ing region shifts to larger d �weaker coupling� but it does not
undergo any additional qualitative changes.

IV. BREAKING THE SYMMETRY

In Sec. III we discussed the Z2-symmetric situation with
identical outer lasers. In Fig. 5 we present the effects of two
different symmetry-breaking perturbations for �=1.5. In Fig.
5�a� we introduce a small mismatch between the two outer
lasers 
CA=wC−wA=0.02 �m. As a result, the locking re-
gion shrinks in size and vanishes for d�6.2 �m. Further-
more, it is now bounded toward increasing d by a saddle-
node bifurcation and toward decreasing d by a Hopf
bifurcation. In addition we find a Hopf bifurcation curve at
large d, which ends in codimension-two Bogdanov-Takens
�BT� points. In Fig. 5�b� we keep the two neighboring lasers
B and C identical wB=wC=4 �m and at a constant distance
dCB=5 �m, and explore the locking region in the �dAB ,
BA�
plane. In this case, locking at large distance dBA remains and
is bounded by saddle-node bifurcations, but requires positive
width difference 
BC. Toward decreasing dBA the locking
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region is bounded by saddle-node and Hopf bifurcations with
several changes in the type of the locking boundary, which
are indicated by codimension-two Bogdanov-Takens and
saddle-node Hopf points.

As a consequence of the broken symmetry in the array,
the stable locking region is modified: it changes its shape and
shifts slightly toward positive 
BA in the �d ,
BA� plane,
and the locking region may disappear for larger values of d.
Furthermore, the transcritical locking boundaries from Fig.
2�b� unfold into saddle-node locking boundaries �28�
in Fig. 5. Another difference from the symmetric case is that
all three modes have nonzero intensity and contribute to
locking as is shown in Fig. 6. Finally, none of the lasers are
in phase: the phase difference between the total electric field
�1� of laser A and B is in the range of −���AB�0 and the
phase difference between of laser A and C is in the range of
0��AC��.

V. CONCLUSION

We studied stable locking �single-frequency operation� of
three laterally coupled laser oscillators by means of perform-
ing a bifurcation analysis of a mathematical model given as a
field expansion in terms of three spatial composite-cavity
modes. For the case where the outer lasers are identical we
calculated the locking region in the plane of the distance
between the lasers and the width difference of the middle
laser. These two parameters specify the coupling between the
lasers and the frequency detuning of the middle laser from
the two outer lasers, respectively. We concentrated on the
importance of the amplitude-phase coupling parameter � and
showed that the locking characteristics is very different for
low values of �, as opposed to larger values. Namely, for
small amplitude-phase coupling ���0�, stable locking oc-
curs for arbitrary coupling, but only within two sidebands
where the middle laser has a different lateral width so that it
is sufficiently detuned from the two outer lasers. Further-
more, we identified coupling conditions where the middle
laser is in phase and out of phase with the outer lasers. For
strong amplitude-phase coupling �such as for �=1.5�, on the
other hand, locking occurs only for up to moderate/weak
coupling and within a single band around where all three
lasers have comparable lateral widths. Furthermore, we dis-
cussed modifications to locking that arise from perturbations
to the symmetrical case of two identical outer lasers and
equal distances between neighboring lasers. The effects un-
covered here of amplitude-phase coupling and symmetry
breaking in the array show that locked laser arrays would

4 5 6

−0.05

0

0.05

0.1

0.15

4 5 6 7

−0.1

−0.05

0

0.05

0.1

S

SH

S

H H BTBT

SH

S

S

S

S

S

SH

BT

BT

BT

H
BT

S

H

H

(b)

wB = wC = 4µm

dBC = 5µm

(a)

wA = 4µm

wC = 4.02µm

dBA[µm]

d[µm]

∆BA
[µm]

∆BA
[µm]

FIG. 5. �Color online� Stability diagram of locked solution �5�
for the modal intensities Ij = �Ej

0�2 and �=1.5. Panel �a� shows the
�d ,
BA� plane for 
AC=0.02 �m, and panel �b� shows the
�dBA ,
BC� plane for wA=wB=4 �m and dBC=5 �m. Labeling and
color coding is as in Fig. 2. Comparison with Fig. 2�b� reveals
effects of nonidentical outer lasers and nonequal distances between
the neighboring lasers.

0

4

8

0

4

8

0

4

8

−1

0

1

−0.03 0 0.05
−1

0

1

∆BA[µm]

I 1
I 2

I 3
φ

A
C

[π
]

φ
A

B
[π

]
FIG. 6. �Color online� Modal intensities Ij = �Ej

0�2 of locked so-
lutions �5� and the phase difference between the total electric field
�Eq. �1�� in lasers A and B �AB and in lasers A and C �AC; one
parameter section of Fig. 5�a� for d=5.5 �m. Labeling and color-
ing is as in Fig. 3. Comparison with Fig. 3�b� reveals effects of
nonidentical outer lasers on the behavior of individual composite-
cavity modes.

LOCKING BEHAVIOR OF THREE COUPLED LASER… PHYSICAL REVIEW E 80, 026212 �2009�

026212-5



require a careful manufacturing of lateral widths and dis-
tances with critical dependence on the type of the laser that is
used. In particular, the lack of stable locking solution where
all three lasers are in phase for ��0.5 may explain some of
the great difficulties that are encountered in obtaining in-
phase semiconductor laser arrays.
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